If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f^2=234
We move all terms to the left:
2f^2-(234)=0
a = 2; b = 0; c = -234;
Δ = b2-4ac
Δ = 02-4·2·(-234)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{13}}{2*2}=\frac{0-12\sqrt{13}}{4} =-\frac{12\sqrt{13}}{4} =-3\sqrt{13} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{13}}{2*2}=\frac{0+12\sqrt{13}}{4} =\frac{12\sqrt{13}}{4} =3\sqrt{13} $
| 5(3x-7)-(2x+9)=-2 | | -5(2x-5-3x-5=-7 | | 14000/x+1500=14000/x-3 | | -4(3y+10)=20 | | 6x-x+12=3x-18 | | 20+44x=42+55x | | 6x-12=3x-18 | | 3x+6x-4,5x=8 | | 9+n=8+1 | | j=2.–10−4|j|= | | p-15.48=5.16 | | 10x+6=8x+2(x+6) | | 10x=20-5 | | x*5=3.75 | | H-4(h•5)=20 | | 4^3x-1=1/16 | | W-21(w-6)=126 | | 4/9n=9/10 | | 28x15=420 | | 5(v-8)-7v=22 | | 4+7d=8d | | 4.4+2j=6.4 | | −1=-1−6y | | −1=-1-6y−1−6y | | .12x+13;x=5 | | 3x+11=2x=-5 | | m+3m−8=20+6m | | x2+35x-10000=0 | | 6=n÷6 | | 4.2+10m=6.73 | | 0.5x+0.45(30)=49.5 | | x−11=16+4x |